
KeyShield SSOKeyShield SSO
 server API

ver. 6.1 (2. Sep. 2015) Na Pankráci 54, Praha 4
Czech Republic, Europe

www.keyshieldsso.com

KeyShield SSO introduction
KeyShield used to be a standard IdP SSO solution. It provides 3 standard and
commonly used SSO interfaces – SAML2, Radius Accounting and eDirectory
Network Address Attribute management. Beside them, a proprietary but easy
to implement and incredible fast REST API is available. If your system is
already IdP or LDAP enabled, the KeyShield SSO integration can be completely
done within a working day. The server is Java based with direct support for
Linux and Windows installation, while native clients are available for all major
client platforms – Windows XP and higher, Linux, MacOSX, iOS, Android,
BlackBerry10.

With all advantages mentioned above, KeyShield SSO is an ideal solution when
you need to make your system SSO enabled.
There are few reasons, why to use the REST API even when SAML is fully
supported:

1. KeyShield SSO can support virtually any protocol used by your system –
e.g. WebDAV or proprietary client communication – when you implement
our REST API.

2. REST API is pretty easy to implement, you don't need to waste your
valuable resources. 1 working day for the integration would fit to any
schedule.

3. With KeyShield API, your solution will be much faster then with any other
SSO solution. The server is able to process up to 10.000 authentication
request per second. This is possible because the user is pre-
authenticated via our native client. Typical user gets authenticated
during workstation log-on procedure. The KeyShield SSO server is able
to provide the user's identity within 100 microseconds.

4. With the user identity certificates, also multi layered systems can be
supported. When the front-end layer of your system is able to
communicate with the client directly, the certificate received from
KeyShield SSO server can be passed to an application or database layer.

5. What is easy for you, would be easy for your customers as well. Don't
worry about months or even years spent on customer's SSO projects –
with KeyShield, your customers can have a productive SSO environment
within a day.

KeyShield SSO – how does it work?
KeyShield SSO always uses at least one so called User Source. It can be
eDirectory, Active Directory, Open LDAP, Generic LDAP or the built in
ApacheDS based directory. Here you can find one of the most important
advantages – KeyShield SSO can work with as many directories at the time as

http://www.keyshieldsso.com

www.keyshieldsso.com

the customer needs. We have nice mixed environments with both eDirectory
and Active Directory. If the customer has no directory or he don't want to use
the existing directory for SSO purposes, it's easy to use the built-in directory –
you just enable this option.

When the user source (s) is configured, users can authenticate and their
identities can be provided to integrated systems.

User can authenticate manually, by entering username and password at any
supported platform. On windows, NTLM and Novell client authentication is
available. This is another very important advantage as the majority of users
still consumes network services with windows desktops and notebooks. The
functionality is described in the documentation but in short – with this feature,
user needs to authenticate to network (eDirectory or Active Directory) and no
further authentication to KeyShield SSO is needed.

KeyShield SSO server checks users in regular intervals, every 2 minutes by
default. Thank to this, we can keep a list of the authenticated users in the
memory. As mentioned above, then a response time to the SSO authentication
request from an integrated system can be about 100 microseconds.

The REST API SSO request is pretty easy – an integrated application sends the
user's IP address and optionally extra required attributes. The KeyShield SSO
server replies with the user's identity and attributes.

In short, KeyShield SSO server tells you – I did check the identity of the user
behind the IP address provided and I'm pretty sure, that before max.
2 minutes (or any time out used) he or she was here. If you use a certificate, it
tells same. It's similar to common token systems – a token tells you, what was
corrected at the time when it has been issued and how long you can believe to
that. Our 2 minutes default time is relatively short in comparison with other
systems, where 5 or even 10 minutes validity period is used.

KeyShield SSO integration security
There are many advanced settings like High Availability, Load Balancing,
Include and Exclude directory parts, timeouts, etc, etc. These parameters are
described within the Administrator documentation. But you don't need to care
about them – they are not affecting the communication in between your
system and the KeyShield SSO server.

What you need to think about are integration security related parameters.
Even if you are developing the integration for a customer, who is not using any
of them, it's recommended to implement them – https request to the
KeyShield SSO server API interface with validation of the server's identity. This

http://www.keyshieldsso.com

www.keyshieldsso.com

is pretty common and you will probably just let your customer's know how to
get the server's certificate and how to store into the keystore on the server
where your system is running.

Other option is so called API Key – if this feature is active, any integrated
system has to prove itself by the API key, otherwise no information is
provided. This protects valuable and sensitive information in the customer's
LAN – user to IP address assignment. Because this API Key can be a part of
the URL you are sending to the KeyShield SSO server when requesting the
user's identity, it's very easy to implement. The only thing you need to take
care about is to make this a part of the configuration and add it to the URL
when active.

As we already mentioned above, the complete integration thru our REST API
can be done within a working day. With such a small investment, you can offer
many new SSO features to your customers.

KeyShield SSO test environment
For testing and development, the OVF installation kit is an ideal option. It's
a SLES optimized instance with pre-installed KeyShield SSO server. The only
thing you have to do is to provide DNS name, IP address, root password and
KeyShield admin password. Of course, convenient installation is also available
for both Windows and Linux servers. In comparison with the OVF installation,
you have just to choose an existing or allow included installation of Java
Runtime.

Once the KeyShield SSO server is running, the configuration is available thru
convenient browser interface. By default, 8485 port is used for API/
management console and 9011 for User Interface. You can change these
default ports during first stage of the installation mentioned above. Please,
make sure that selected ports are not blocked by any firewall on the server,
your workstation or the network..

What next:

1. User Source Connector
You need to create at least one user source (directory connector). The easiest
way is to use some existing LDAP directory, which is a part of your lab
environment. The system you are going to integrate should use same
directory or same UserIDs (common UserIDs are email address, CN,
sAMAccountName etc). The connector needs user account to search the
directory for user objects. Due to different design of eDirectory, Active
Directory and Open LDAP, automatic creation of this user is available with
eDirectory only. Otherwise you have to create this user manually first.
Similar situation is with LDAP search base definition. It can be the root with

http://www.keyshieldsso.com

www.keyshieldsso.com

eDirectory but it must be some existing container below the root with Active
Directory.

For development, so called manual authentication is very important. Keep this
option enabled and set manual login attributes to accordingly to your lab LDAP
directory. It can be CN with eDirectory and sAMAccountName with Active
Directory. This setting doesn't affect an information provided for integrated
systems. Now try “Test” button. If KeyShield can access your directory
properly, then you can save and apply your connector configuration.

2. Client Interface
Each Source Connector must have at least one User Interface. If you plan to
use just one user interface (enough for single directory support development),
it's recommended to use 0.0.0.0 as the interface address and to specify server
address for the client configuration file. Now try “Test” button. If KeyShield can
bind and listen on the address/port configured, you can save and apply your
user interface configuration.

3. Client Device
For any test, you need at least one user device with KeyShield SSO Client
installed. This device must be able to connect to KeyShield SSO server and to
your system. The client must not be behind NAT. It's recommended to run
both servers and user device on same network just for easier troubleshooting.
Client software is available within the Download section of your newly installed
KeyShield SSO server, on www.keyshieldsso.com website or at stores
(AppStore, Google Play, BlackBerry). The Client configuration can be set
manually or downloaded from your KeyShield SSO server. The only important
parameter within the configuration at this stage is server address and port.
Once you set correct address, the client should connect to the server
immediately. This is indicated by yellow color of the client icon.

Please, keep in mind that KeyShield SSO Client indicates it's status by 3
colors:

Red – no connection to the server

Yellow – connected to server

Green – authenticated

Manual authentication mode is not default for Windows client. Please visit the
Developers corner at www.keyshieldsso.com and download the KeyShield SSO
Client Mode Switcher. Than switch the client on your windows workstation to
the Manual mode. The client needs to be restarted.

http://www.keyshieldsso.com
http://www.keyshieldsso.com
http://www.keyshieldsso.com

www.keyshieldsso.com

When the client is connected to server (status yellow), you can invoke the
login dialog by clicking the client icon. This is common for all platforms.
Use any existing user object for your first authentication. You just need to
enter valid value for one of attributes configured for the manual authentication
for the Connector (cn, sAMAccountName etc). Use just the value, no fdn
specification nor special characters etc is needed.

If the username/password is correct, you should get authenticated within 1-2
seconds. The client icon should be green and you should be able to list
authenticated user at the server console (use Users → All users). If the
server IP address is 192.168.1.10 and your IP address is 192.168.1.55, then
you can check your authentication by following URL with any browser:
http://192.168.1.10/api/userByIP/192.168.1.55?type=json … (=xml, = html)
This is the way your system will use when you implement the REST API SSO
integration.

In case of any issues, first check the Configuration → Summary page at the
KeyShield server console. Last error/warning is shown here within Server
message field (if not visible, no error has been encountered since last restart
of the server). The complete current log is available at Logs→
View current log. Here you can change detail level to Client or Detailed and
repeat authentication attempts without restarting the server.

Please, don't hesitate to contact your local partner or us in case of any serious
troubles.

KeyShield SSO UserID recommendation
Within the IdP SSO concept, UserID (a principal's unique identification) plays
a crucial role. It must be unique at least company wide, but a world wide
uniqueness brings important advantage when external users are supported.
While KeyShield SSO is always working with at least one LDAP user source,
your application doesn't need to be LDAP enabled. Of course, it's a clear
advantage when you implement for example a synchronization mechanism in
between your internal user database and customer's directory. But in fact, for
SSO purposes, KeyShield SSO gives you the UserID and you authenticate the
identified user from your database.

KeyShield SSO is always providing so called ScreenName, which should be
a company unique UserID. But your system can be installed into a long time
existing environment with incompatible setup of this basic attribute. It's why
we strongly recommend to implement support for both alternatives, the
ScreenName and the attributes:{AttrName}.

http://www.keyshieldsso.com
http://192.168.1.10/api/userByIP/192.168.1.55?type=json

www.keyshieldsso.com

KeyShield SSO server API
KeyShield server uses HTTP to provide its API. You can find more information
about SSO function above or in the KeyShield documentation.

Single Sign On (SSO)
SSO API allows querying of user id information for specified client IP address -
for devices running KeyShield client.

JSON version of this API is available at:

HTTP: GET /json/userByIP/{ip}

http://172.22.1.11:8485/json/userByIP/172.22.1.203

or with optional attributes query parameter

http://172.22.1.11:8485/json/userByIP/172.22.1.203?attributes=mail,x-memberOf

You can use any LDAP attribute as long as it's allowed in KeyShield SSO
Configuration. Add Optional API attributes in Connector configuration and
make sure, that the corresponding KeyShield SSO manager user has
read_access_rights to the requested attributes. The special x-memberOf
attribute contains list of user's LDAP groups obtained by searching LDAP server
for groups with member={user FDN} (which means that the member attribute
contains user's FDN = user is the member of the group).

In KeyShield SSO 5.2 API authorization keys were added. When you configure
API authorization key in General Configuration section, you need to include API
key in API request either as key={api key} query attribute or as a HTTP
header KeyShieldSSO-APIKey.

Example of URL with API authorization key included:

http://172.22.1.11:8485/json/userByIP/172.22.1.203?key=ZnBg4YQfQYL6c5jFUYgxF8TX4maICAID

server JSON response:

{
"ipAddress" : "172.22.1.203",
"fdn" : "cn=dummyUser,o=org",
"screenName" : "dummyUser",
"authType" : "L",

http://www.keyshieldsso.com
http://172.22.1.11:8485/json/userByIP/
http://172.22.1.11:8485/json/userByIP/
http://172.22.1.11:8485/json/userByIP/

www.keyshieldsso.com

"authMethod" : "L",
"client" : null,
"hwTokenPresent" : false,
"authenticatedAt" : 1332851162349
"attributes" : {

"mail" : "admin@testdom.cz",
"x-memberOf" : ["cn=group1,o=org",

 "cn=group2,o=org"]
},
"manual" : true,

}

ipAddress
The client IP address – this will be equal to 'ip' parameter of the request.
fdn
User source fully specified object name (e.g LDAP dn) of the authenticated
user
screenName
UserID - ! warning ! By default, this is CN for eDirectory and sAMAccountName
for Active Directory. Your customer can use virtually any attribute (see Server
Console → Configuration → Authentication connectors – User ID Attribute. Thus
we can't technically ensure unique values provided by this parameter. Please,
discuss this within your documentation and/or use optional attributes as
mentioned in the UserID recommendation section above.
manual
This flag is true if the KeyShield client was configured to use UID
authentication mode (user enters user id manually, with no password) - it's
included for backwards compatibility only, use authType instead.
authType
Client authentication type. Possible values:

E ... eDirectory authentication
A ... Active Directory authentication
U ... UID authentication (user id only)
L … Manual authentication (username & password)

authMethod

Client authentication method subtype. Possible values:

Active Directory

authType = A
authMethod = AD
authMethod = AD_NTLM

http://www.keyshieldsso.com
mailto:admin@testdom.cz

www.keyshieldsso.com

eDirectory
authType = E
authMethod = EDIR

Manual – (it was originally named LDAP)
authType = L
authMethod = USERNAME
authMethod = HWTOKEN

client
If the user was authenticated using RADIUS , the value of client field is
'RADIUS', otherwise it's null.
hwTokenPresent
Boolean field indicating that HW token (RFID card) of the user is currently
present on client.

authenticatedAt
Client authentication start timestamp (in milliseconds since midnight, January
1, 1970 UTC)
attributes
array of LDAP attribute values requested using ?attributes={attribute list}
query.

XML version of SSO API (Note: This API is deprecated, we strongly recommend
to use JSON API) is available at:

HTTP: GET /xml/userByIP/{ip}

Parameter ip is the IP address of the client computer, for which you want to
get user id information.
http://172.22.1.11:8485/xml/userByIP/172.22.1.203

server returns XML document:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_20" class="java.beans.XMLDecoder">
 <object class="cz.tdp.kshield.UserInfo">
 <void property="ipAddress">
 <string>172.22.14.2</string>
 </void>
 <void property="FDN">
 <string>cn=admin,o=org</string>
 </void>
 <void property="screenName">
 <string>admin</string>
 </void>
 </object>
 <void property="authType">

http://www.keyshieldsso.com
http://172.22.1.11:8485/xml/userByIP/

www.keyshieldsso.com

 <string>L</string>
 </void>
 <void property="authenticatedAt">
 <long>1332937007227</long>
 </void>
 <void property="attributes">
 <object class="java.util.TreeMap">
 <void method="put">
 <string>mail</string>
 <string>admin@testdom.cz</string>
 </void>
 <void method="put">
 <string>x-memberOf</string>
 <array class="java.lang.Object" length="2">
 <void index="0">
 <string>cn=group1,o=org</string>
 </void>
 <void index="1">
 <string>cn=group2,o=org</string>
 </void>
 </array>
 </void>
 </object>
 </void>
</java>

if there is no logged in user for the given IP address KeyShield server will
return:
<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_20" class="java.beans.XMLDecoder">
 <object class="cz.tdp.kshield.UserInfo"/>
</java>

We have provided convenient KeyShield Java library implementation - see
WSTLib directory. See KSDemo directory for Spring Security integration
example.

Sample perl script for getting the user ID for the given IP address:

use LWP::Simple;
use XML::Simple;

$url = "http://127.0.0.1:8485";
$ip_address = $ARGV[$0];

my $xs = XML::Simple->new();

načtení XML dokumentu s UserInfo pro zadanou IP adresu
my $tree = $xs->XMLin(get ($url."/userByIP/".$ip_address));

výpis fdn
print $tree->{ object }->{ void }[0]->{ string };

http://www.keyshieldsso.com
mailto:admin@testdom.cz</string>
http://127.0.0.1:8485

www.keyshieldsso.com

Authentication Certificate API
Authentication Certificate API provides a certificate, which certifies the user
authentication at specified IP address. With the certificate, not only the user
interface of your system but also the engine behind can validate user identity.

KeyShield SSO has own internal CA for signing these Authentication
Certificates. It's why you need a keystore with valid certificate and key pair.
The certificate can be self-signed or signed by the customer CA provider, it
depends on the particular customer's security concept. KeyShield will work
with any valid certificate but it's highly recommended to use a certificate which
is intended for signing. The keystore must be a .p12 file.

→ →The keystore can be uploaded via KeyShield server console Config
General/Web_interface/API_keystore. The keystore password must be entered
into the API keystore password field.

When Optional API attributes settings contains parameter “mail” and the
certificate API request will ask for mail (attributes=mail), the issued
certificate will contain the user's email address.

Certificate API is available at:

HTTP: GET /api/userByIP/{ip}

http://172.22.1.11:8485/api/userByIP/172.22.1.203

or with optional attributes query parameter

http://172.22.1.11:8485/api/userByIP/ 172.22.1.203 ?type=cer&attributes=mail

You can use special URL to request user info for IP address of current host using:

http://172.22.1.11:8485/api/userByIP/ myip

When requesting userinfo for 'myip' no API key is required as the server
returns user information only for current IP address.

It's possible to request JSON/XML/html (dynamic/UserInfo.ftl template) user
information using /api/userByIP URI. You can specify requested response type
using HTTP Accept header with following values:

Certificate:

Accept: “application/pkix-cert”

http://www.keyshieldsso.com
http://172.22.1.11:8485/api/userByIP/
http://172.22.1.11:8485/api/userByIP/
http://172.22.1.11:8485/api/userByIP/

www.keyshieldsso.com

JSON:

Accept: “application/json”

XML:

Accept: “text/xml”

html:

Accept: “text/html”

Alternative option is to use type={cer/json/xml/html} query attribute. But it
only works if requested (Accept) content type is text/html. For example when
testing URL from web browser.

When user is not authenticated at specified IP address, server returns empty
user info:
{"screenName":null,"ipAddress":"172.22.1.200","password":null,"manual":false,"au
thType":null,"authenticatedAt":0,"attributes":null,"connectorID":null,"fdn":null
}

In case of “application/pkix-cert”, server returns HTTP response code 204 No
Content and no certificate is returned if the user is not authenticated.

User info attributes are stored as alternative subject attributes in the returned
certificates. ASN.1 id's are:

• cn 2.5.4.3

• FDN 2.5.4.49
• Connector ID 2.5.4.45
• GUID 1.3.6.1.1.16.1
• mail as rfc822Name subjectAltName (rfc3280#section-4.2.1.7)
• IP as iPAddress subjectAltName

http://www.keyshieldsso.com

	KeyShield SSO introduction
	KeyShield SSO – how does it work?
	KeyShield SSO integration security
	KeyShield SSO test environment
	1. User Source Connector
	2. Client Interface
	3. Client Device

	KeyShield SSO UserID recommendation
	KeyShield SSO server API
	Single Sign On (SSO)
	Authentication Certificate API

